Modes of Explosive Combustion during Emergency Explosions of the Gas Clouds in the Open Space



References:
1. Gorev V.A. Comparison of the air blast waves from different sources. Fizika goreniya i vzryva = Combustion, Explosion, and Shock Waves. 1982. № 1. С. 94–101. (In Russ.).
2. Agapov A.A., Safonov V.S., Sumskoy S.I., Shvyryaev A.A. On Some Differences in the Methodological Approaches when Modeling the Parameters of Pressure Waves from Combustion and Detonation of Fuel-Air Mixtures Clouds. Bezopasnost Truda v Promyshlennosti = Occupational Safety in Industry. 2020. № 5. pp. 36–42. (In Russ.). DOI: 10.24000/0409-2961-2020-5-36-42
3. Sumskoy S.I., Efremov K.V., Lisanov M.V., Sofyin A.S. Comparing Results of Hazardous Substances Emission Simulation and Facts of the Accidents. Bezopasnost Truda v Promyshlennosti = Occupational Safety in Industry. 2008. № 10. pp. 42–50. (In Russ.).
4. Agapova E.A., Degtyarev D.V., Lisanov M.V., Kryukov A.S., Kulberg S.B., Sumskoy S.I. Comparative Analysis of the Russian and Foreign Methods and Computer Programs on Modeling Emergency Releases and Risk Assessment. Bezopasnost Truda v Promyshlennosti = Occupational Safety in Industry. 2015. № 9. pp. 71–78. (In Russ.).
5. Gorev V.A., Fedotov V.N. Experimental study of the influence of cluttered space on the rate of gas combustion. Fizika goreniya i vzryva = Combustion, Explosion, and Shock Waves. 1986. № 6. pp. 79–83. (In Russ.).
6. Moen I.O., Donato M., Knystautas R., Lee J.H. Flame acceleration due to turbulence produced by obstacles. Combustion and Flame. 1980. Vol. 39. Iss. 1. pp. 21–32. DOI: 10.1016/0010-2180(80)90003-6
7. Gorev V.A. The role of the scale effect in the mechanism of flame acceleration by barriers. Khimicheskaya fizika = Chemical physics. 1990. № 12. pp. 1602–1605. (In Russ.).
8. Masri A.R., Alharbi A., Meares S., Ibrahim S.S. A Comparative Study of Turbulent Premixed Flames Propagating Past Repeated Obstacles. Industrial & Engineering Chemistry Research. 2012. Vol. 51. pp. 7690−7703. DOI: 10.1021/ie201928g
9. Kim S.E. Large Eddy Simulation Using an Unstructured Mesh Based Finite-Volume Solver. Available at: http://courses.washington.edu/mengr544/handouts-08/AIAA-2004-kim.pdf (accessed: June 1, 2022).
10. Poinsot T., Veynante D., Candel S. Quenching processes and premixed turbulent combustion diagrams. Journal of Fluid Mechanics. 1991. Vol. 228. pp. 561–606. DOI: 10.1017/S0022112091002823
11. Williams F.A. Turbulent combustion. The Mathematics of Combustion. Philadelphia: SIAM, 1985. pp. 97–131. DOI: 10.1137/1.9781611971064.ch3
12. Bradley D., Lau A.K.C., Lawes M., Smith F.T. Flame stretch rate as a determinant of turbulent burning velocity. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences. 1992. Vol. 338. Iss. 1650. pp. 359–387. DOI: 10.1098/rsta.1992.0012
13. Bradley D. How fast can we burn? Symposium (International) on Combustion. 1992. Vol. 24. Iss. 1. pp. 247–262. DOI: 10.1016/S0082-0784(06)80034-2
14. Zimont V.L. Gas premixed combustion at high turbulence. Turbulent flame closure combustion mode. Experimental Thermal and Fluid Science. 2000. Vol. 21. Iss. 1–3. pp. 179–186. DOI: 10.1016/S0894-1777(99)00069-2
15. Peters N. The turbulent burning velocity for large-scale and small-scale turbulence. Journal of Fluid Mechanics. 1999. Vol. 384. pp. 107–132. DOI: 10.1017/S0022112098004212
DOI: 10.24000/0409-2961-2022-8-7-12
Year: 2022
Issue num: August
Keywords : detonation emergency explosions deflagration explosion turbulent combustion turbulence scale laminar combustion
Authors:
  • Gorev V.A.
    Dr. Sci. (Phys.-Math.), Prof., va.gorev@yandex.ru, Moscow State University of Civil Engineering, Moscow, Russian Federation