To the Use of Thermal Imagers in Solving the Topical Problems of Thermal Physics at a Metallurgical Enterprise



References:
1. Lazarev L.P. Optoelectronic guidance devices for the aircrafts: textbook for universities. 5-e izd., pererab. i dop. Moscow: Mashinostroenie, 1989. 509 p. (In Russ.).
2. Yakushenkov Yu.G. Theory and calculation of optoelectronic devices: textbook for universities. Moscow: Logos, 2011. 568 p. (In Russ.).
3. Tarasov V.V., Yakushenkov Yu.G. Two- and multi-band optoelectronic systems with matrix radiation receivers. Moscow: Universitetskaya kniga; Logos, 2007. 192 p. (In Russ.).
4. Korotaev V.V., Melnikov G.S., Mikheev S.V., Samkov V.M., Soldatov Yu.I. Fundamentals of thermal imaging. Saint-Petersburg: NIU ITMO, 2012. 122 p. (In Russ.).
5. Lloyd Dzh. Thermal imaging systems. Moscow: Mir, 1978. 416 p. (In Russ.).
6. Kronberg P. Remote study of the Earth. Basics and methods of remote sensing in geology. Moscow: Mir, 1988. 343 p. (In Russ.).
7. Horn S., Norton P., Cincotta T., Stoltz A., Benson D., Perconti P., Campbell J. Challenges for third-generation cooled imagers. Available at: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5074/0000/Challenges-for-third-generation-cooled-imagers/10.1117/12.501269.short (accessed: October 10, 2020). DOI: 10.1117/12.501269
8. Мouroulis P. Compact infrared spectrometers. Available at: https://spie.org/Publications/Proceedings/Paper/10.1117/12.817358 (accessed: October 10, 2020). DOI: 10.1117/12.817358
9. Fritze J., Münzberg M. The new megapixel thermal imager family. Available at: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8012/1/The-new-megapixel-thermal-imager-family/10.1117/12.884643.short (accessed: October 10, 2020). DOI: 10.1117/12.884643
10. Li C., Skidmore G.D., Han C.J. Uncooled VOX infrared sensor development and application. Available at: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8012/80121N/Uncooled-VOx-infrared-sensor-development-and-application/10.1117/12.887113.short (accessed: October 10, 2020). DOI: 10.1117/12.887113
11. Volkov V.G., Kovalev A.V., Fedchishin V.G. Thermal imaging devices of the new generation. Available at: http://www.thermoview.ru/pdf/matrix.pdf (accessed: October 10, 2020). (In Russ.).
12. Ivanov N.N., Ivanov A.N., Gorshkov S.P., Kuznetsov N.V., Fedoruk A.I., Khrameshin V.I., Gelfenshteyn A.V., Filimonov I.L. Experience of work of an ejector gas-air burner at Severstal JSC. Stal = Steel. 2007. № 6. pp. 25–28. (In Russ.).
13. Ivanov N.N. Ways to improve thermal preparation of steel ladles. Steel in Translation. 1997. Vol. 27. № 12. pp. 24–29.
14. Ivanov N.N., Syromyatnikov C.A., Medvedev A.V., Buynovskiy S.N. Gas-Air Stand for Controlling the Operation of Multi-Circuit Ejector Burner for Casting Ladles Drying and Heating. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2019. № 1. pp. 7–13. (In Russ.). DOI: 10.24000/0409-2961-2019-1-7-13
15. Zavidey V.I., Sizov V.A. IR Imagers of New Generation for Heat Control of State for Metallurgical Furnaces Lining. Metallurg = Metallurgist. 2006. № 2. pp. 56–58. (In Russ.).
DOI: 10.24000/0409-2961-2021-5-7-12
Year: 2021
Issue num: May
Keywords : casting ladle multilayer lining thermal imager surface temperature gas burner investigation of the new materials properties
Authors: