References:
1. Aven T. Risk assessment and risk management: Review of recent advances on their foundation. European Journal of Operational Research. 2016. Vol. 253. Iss. 1. pp. 1–13. DOI: 10.1016/j.ejor.2015.12.023
2. Black J., Baldwin R. When risk-based regulation aims low: approaches and challenges. Regulation and Governance. 2012. Vol. 6. Iss. 1. pp. 2–22. DOI: 10.1111/j.1748-5991.2011.01124.x
3. Kendall K. The Increasing Importance of Risk Management in an Uncertain World. Available at: https://secure.asq.org/perl/msg.pl?prvurl=http://rube.asq.org/quality-participation/2017/04/risk-management/the-increasing-importance-of-risk-management-in-an-uncertain-world.pdf (accessed: December 1, 2020).
4. Timofeeva S.S., Bogatova D.V., Timofeev S.S. Risk-oriented approach to safety labor in social institutions of Irkutsk region. ХХI vek. Tekhnosfernaya bezopasnost. = XXI Century. Technosphere Safety. 2019. Vol. 4. № 1 (13). pp. 78–91. (In Russ.). DOI: 10.21285/2500-1582-2019-1-78-91
5. Khomenko A.O. Current Issues of a Risk-Oriented Approach to Labor Protection. Sotsialno-trudovye issledovaniya = Social & labour research. 2019. № 1 (34). pp. 100–110. (In Russ.).
6. Matyushin A.V., Poroshin A.A., Kharin V.V., Bobrinev E.V., Mashtakov V.A., Shavyrina T.A. Evaluation of Regional Risk Factors Incidence of Employees of the Federal Fire Service of State Fire Service of Emercom of Russia. Bezopasnost zhiznedeyatelnosti = Life Safety. 2016. № 1. pp. 6–13. (In Russ.).
7. Zaviyalov Ya.O. Investment Strategies Based on Anomalies. Put nauki = The Way of Science. 2015. № 10 (20). С. 56–60.
8. Kazhemskiy M.A., Shelukhin O.I. Multiclass Classification of Attacks to Information Resources with Machine Learning Techniques. Trudy uchebnykh zavedeniy svyazi = Proceedings of Telecommunication Universities. 2019. Vol. 5. № 1. pp. 107–115. (In Russ.).
9. Kharya S., Agrawal S., Soni S. Naive Bayes classifiers: A probabilistic detection model for breast cancer. International Journal of Computer Applications. 2014. Vol. 92. Iss. 10. pp. 26–31. DOI: 10.5120/16045-5206
10. Mandal S.K. Performance analysis of data mining algorithms for breast cancer cell detection using Naive Bayes, logistic regression and decision. International Journal of Engineering and Computer Science. 2017. Vol. 6. Iss. 2. pp. 20388–20391. DOI: 10.18535/ijecs/v6i2.40
11. Gevorkyan P.S., Potemkin A.V., Eysymont I.M. The theory of probability and mathematical statistics. Мoscow: FIZMATLIT, 2016. 176 p. (In Russ.).
12. Spirina M.S. The theory of probability and mathematical statistics. Мoscow: Academia, 2013. 320 p. (In Russ.).
13. Bassett R., Deride J. Maximum a posteriori estimators as a limit of Bayes estimators. Mathematical Programming. 2019. Vol. 174. pp. 129–144. DOI: 10.1007/s10107-018-1241-0
14. GOST 12.0.230.3—2016. Occupational safety standards system. Management systems for occupational safety. Evaluation of effectiveness and efficiency. Available at: https://docs.cntd.ru/document/1200145713 (accessed: December 1, 2020). (In Russ.).
15. Lyubushin N.P., Brikach G.E. Harrington's generalized desirability function in the multiparameter economic problems. Ekonomicheskiy analiz: teoriya i praktika = Economic analysis: theory and practice. 2014. № 18 (370). pp. 2–10. (In Russ.).
2. Black J., Baldwin R. When risk-based regulation aims low: approaches and challenges. Regulation and Governance. 2012. Vol. 6. Iss. 1. pp. 2–22. DOI: 10.1111/j.1748-5991.2011.01124.x
3. Kendall K. The Increasing Importance of Risk Management in an Uncertain World. Available at: https://secure.asq.org/perl/msg.pl?prvurl=http://rube.asq.org/quality-participation/2017/04/risk-management/the-increasing-importance-of-risk-management-in-an-uncertain-world.pdf (accessed: December 1, 2020).
4. Timofeeva S.S., Bogatova D.V., Timofeev S.S. Risk-oriented approach to safety labor in social institutions of Irkutsk region. ХХI vek. Tekhnosfernaya bezopasnost. = XXI Century. Technosphere Safety. 2019. Vol. 4. № 1 (13). pp. 78–91. (In Russ.). DOI: 10.21285/2500-1582-2019-1-78-91
5. Khomenko A.O. Current Issues of a Risk-Oriented Approach to Labor Protection. Sotsialno-trudovye issledovaniya = Social & labour research. 2019. № 1 (34). pp. 100–110. (In Russ.).
6. Matyushin A.V., Poroshin A.A., Kharin V.V., Bobrinev E.V., Mashtakov V.A., Shavyrina T.A. Evaluation of Regional Risk Factors Incidence of Employees of the Federal Fire Service of State Fire Service of Emercom of Russia. Bezopasnost zhiznedeyatelnosti = Life Safety. 2016. № 1. pp. 6–13. (In Russ.).
7. Zaviyalov Ya.O. Investment Strategies Based on Anomalies. Put nauki = The Way of Science. 2015. № 10 (20). С. 56–60.
8. Kazhemskiy M.A., Shelukhin O.I. Multiclass Classification of Attacks to Information Resources with Machine Learning Techniques. Trudy uchebnykh zavedeniy svyazi = Proceedings of Telecommunication Universities. 2019. Vol. 5. № 1. pp. 107–115. (In Russ.).
9. Kharya S., Agrawal S., Soni S. Naive Bayes classifiers: A probabilistic detection model for breast cancer. International Journal of Computer Applications. 2014. Vol. 92. Iss. 10. pp. 26–31. DOI: 10.5120/16045-5206
10. Mandal S.K. Performance analysis of data mining algorithms for breast cancer cell detection using Naive Bayes, logistic regression and decision. International Journal of Engineering and Computer Science. 2017. Vol. 6. Iss. 2. pp. 20388–20391. DOI: 10.18535/ijecs/v6i2.40
11. Gevorkyan P.S., Potemkin A.V., Eysymont I.M. The theory of probability and mathematical statistics. Мoscow: FIZMATLIT, 2016. 176 p. (In Russ.).
12. Spirina M.S. The theory of probability and mathematical statistics. Мoscow: Academia, 2013. 320 p. (In Russ.).
13. Bassett R., Deride J. Maximum a posteriori estimators as a limit of Bayes estimators. Mathematical Programming. 2019. Vol. 174. pp. 129–144. DOI: 10.1007/s10107-018-1241-0
14. GOST 12.0.230.3—2016. Occupational safety standards system. Management systems for occupational safety. Evaluation of effectiveness and efficiency. Available at: https://docs.cntd.ru/document/1200145713 (accessed: December 1, 2020). (In Russ.).
15. Lyubushin N.P., Brikach G.E. Harrington's generalized desirability function in the multiparameter economic problems. Ekonomicheskiy analiz: teoriya i praktika = Economic analysis: theory and practice. 2014. № 18 (370). pp. 2–10. (In Russ.).