Effect of Acid Solutions on the Residual Strength of Safety and Rescue Ropes



References:
  1. Gavrilova O.E., Nikitina L.L., Kanaeva N.S., Gerkina O.Yu. Review of the modern polymer materials used in the light industry. Vestnik Tekhnologicheskogo universiteta = Bulletin of the Technological University. 2015. Vol. 18. № 1. pp. 276–278. (In Russ.).
  2. McLaren A.J. Design and performance of ropes for climbing and sailing. Journal of Materials Design and Applications. 2006. № 220 (1). pp. 1–12. DOI: 10.1243/14644207JMDA75
  3. Bodin A.M. Comparison of the properties of materials for the production of ropes used in rescue and salvage operations. Materialy I Natsionalnoy nauch.-prakt. konf. s mezhdunar. uchastiem: sb. (Materials of the I National Scientific and Practical Conference with international participation: Collected book). 2019. pp. 350–353. (In Russ.).
  4. Manin L., Mahfoudh J., Richard M., Jauffres D. Modeling the climber fall arrest dynamics. ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2005. DOI: 10.1115/DETC2005-84131
  5. Korolchenko D., Vasilenko V., Lelikov G. Problems of the dynamic test method for individual protection equipment (shock absorbers). MATEC Web of Conferences. 2018. Vol. 193.
  6. Polandov Iu., Korolchenko D. The consideration of the turbulence influence on the gas explosion expansion in non-closed areas. MATEC Web of Conferences. 2017. Vol. 106. № 01040. DOI: 10.1051/matecconf/201710601040
  7. Goh Y.M. An empirical investigation of the average deployment force of personal fall arrest energy absorbers. Journal of Construction Engineering and Management. 2014. DOI: 10.1061/(ASCE)CO.1943-7862.0000910
  8. Goh M.Y., Love P. Adequacy of personal fall arrest energy absorbers in relation to heavy workers. Safety Science. 2010. Vol. 48. Iss. 6. pp. 747–754. DOI: org/10.1016/j.ssci.2010.02.020
  9. Korolchenko D., Kholshchevnikov V. Conceptual problems of high-rise construction and differentiation of research within the urban environment system. MATEC Web of Conferences. 2017. Vol. 106. № 01038. DOI: 10.1051/matecconf/201710601038
  10. Pham N.T., Lelikov G., Korolchenko D. Improvement of the Safety Systems for Working at Heights on Transmission Towers. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 365. DOI: 10.1088/1757-899X/365/4/042054
  11. Baszczynski K. Dynamic strength tests for low elongation lanyards. International journal of occupational safety and ergonomics: JOSE. 2007. № 13 (1). pp. 39–48. DOI: 10.1080/10803548.2007.11076707
  12. Baszczyński K., Jachowicz M. Effect of mechanical factors on the protective parameters of textile elements in personal equipment protecting against falls from a height. Fibres and Textiles in Eastern Europe. 2011. Vol. 19. № 88 (5). pp. 117–124.
  13. Nikonov A., Saprunov I., Zupančič B., Emri I. Influence of moisture on functional properties of climbing ropes. International Journal of Impact Engineering. 2011. № 38 (11). pp. 900–909. DOI: 10.1016/j.ijimpeng.2011.06.003.
  14. Baszczynski K. Effect of repeated loading on textile rope and webbing characteristics in personal equipment protecting against falls from a height. Fibres and Textiles in Eastern Europe. 2015. № 23 (4). pp. 110–118. DOI: 10.5604/12303666.1152741.
  15. Vasilenko V., Korolchenko D., Thanh P.N. Definition of the inspection criteria for personal protective equipment (for work at heights) on example of full body harnesses. MATEC Web of Conferences. 2018. № 251 (64). DOI: 10.1051/matecconf/201825102042
  16. Karasev V.K., Sukhanov A.S. Maintenance and periodic inspection of PPE from falling from a height. Bezopasnost i okhrana truda = Safety and labor protection. 2016. № 4 (69). pp. 24–26. (In Russ.).
  17. GOST EN 1891—2014. Occupational safety standards system. Personal protective equipment against falls from a height. Low stretch kernmantel ropes. General technical requirements. Test methods (with amendment). Available at: http://docs.cntd.ru/document/1200116354 (accessed: November 1, 2019). (In Russ.).
  18. Stupakov A.A., Kapyrin P.D., Lelikov G.D., Semenov P.A., Vasilenko V.V. Stands for research of personal protective equipment against falls from a height. Vestnik MGSU = Vestnik MGSU. 2015. № 8. pp. 130–139. (In Russ.).
  19. GOST R 12.4.206—99. Occupational safety standards system. Personal protective equipment against falls from a height. Methods of testing. Available at: http://docs.cntd.ru/document/1200008452 (accessed: November 1, 2019). (In Russ.).
  20. GOST R ISO 2307—2014. Fibre ropes. Methods for determination of certain physical and mechanical properties. Available at: http://docs.cntd.ru/document/1200117539 (accessed: November 1, 2019). (In Russ.).
  21. Goh Y.M., Goh W.M. Investigating the effectiveness of fall prevention plan and success factors for program-based safety interventions. Safety Science. 2016. Vol. 87. pp. 186–194. DOI: 10.1016/j.ssci.2016.04.007
  22. Pham N.T., Vasilenko V., Korolchenko D. Test and Certification Procedures of Pulleys as a Part of Personal Fall Arrest System. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 365. DOI: 10.1088/1757-899X/365/4/042057 
DOI: 10.24000/0409-2961-2020-2-38-44
Year: 2020
Issue num: February
Keywords : rope chemical damage work at height rope access safety at height
Authors: