Thermal Processes in Automobile Cylinders with Methane during Filling and Emptying



S.Yu. Belousova, Lead Engineer, info@mashtest.ru E.N. Krylov, Deputy General Director Ya.G. Osadchiy, General Director ZAO NPP «Mashtest», Koroljov, Russia V.S. Zarubin, Doctor of Technical Sciences, Professor Bauman Moscow State Technical University, Moscow, Russia

Annotation:

The mathematical model of thermal processes in the automobile cylinder with polymeric liner at methane injection and consumption is constructed. In combination with the option of methane state equation, which is the most closely correlating with experimental data, this model is used for calculation of change of temperature of mehane and the elements of the cylinder design at different rates of methane injection and consumption. The link between the parameters defining the injection mode and the final mass of methane in the cylinder is established; the influence of methane initial condition in the cylinder on the change of methane and the elements temperature of the cylinder design at its emptying is revealed.
Methane, forming the main part of the compressed natural gas used in transport, unlike the majority of gases has an important feature: at an unchangeable temperature and increase of methane pressure approximately to 30 MPa, its density icreases quicker than the pressure. At a normal temperature this phenomenon emerges at a pressure about 15 MPa, at the drop of temperature the pressure corresponding to the greatest growth rate of density also decreases. Above mentioned feature of methane allows to increase efficiency of operation of the cylinders for compressed natural gas in winter period and in the conditions of the continental climate at the significant diurnal variation of temperature. In particular, there is a possibility of significant increase in mass of gas in the cylinder at the decreased ambient air temperature.

References:

1. Belousova S.Ju., Zarubin V.S., Osadchij Ja.G. Transport na alternativnom toplive = Alternative Fuel Transport. 2014. № 4. pp. 5–13.
2. Belousova S.Ju., Zarubin V.S., Osadchij Ja.G. Transport na alternativnom toplive = Alternative Fuel Transport. 2015. № 1. pp. 12–21.
3. Belousova S.Ju., Zarubin V.S., Osadchij Ja.G. Transport na alternativnom toplive = Alternative Fuel Transport. 2015. № 3. pp. 15–24.
4. GOST R 51753—2001. Ballony vysokogo davlenija dlja szhatogo prirodnogo gaza, ispolzuemogo v kachestve motornogo topliva na avtomobilnyh transportnyh sredstvah. Obshhie tehnicheskie uslovija (High-Ppressure Tanks for Compressed Natural Gas Used as a Motor Fuel on Motor Vehicles. General Specifications). Available at: http://docs.cntd.ru/document/1200012999 (accessed: February 10, 2017).
5. GOST 16338—85. Polijetilen nizkogo davlenija. Tehnicheskie uslovija (Low Pressure Polyethylene. Specifications). Available at: http://docs.cntd.ru/document/1200020680 (accessed: February 10, 2017).
6. Setzmann U., Wagner W. Journal of Physical and Chemical Reference Data. 1991. Vol. 20. № 6. pp. 1061–1155.
7. Zarubin V.S. Matematicheskoe modelirovanie v tehnike (Mathematical Modeling in Engineering). Moscow: Izd-vo MGTU im. N.Je. Baumana, 2010. 496p.
8. Zarubin V.S. Modelirovanie (Modeling). Moscow: Izdatelskij centr «Akademija», 2013. 336 p.
9. RD 3112194-1095–03. Rukovodstvo po organizacii i jekspluatacii gazoballonnyh avtomobilej, rabotajushhih na komprimirovannom prirodnom gaze (Guide on Organization and Operation of Compressed Gas Vehicles Operating with Compressed Natural Gas). Available at: http://docs.cntd.ru/document/1200034846 (accessed: February 14, 2017).
10. Malkov M.P. Spravochnik po fiziko-tehnicheskim osnovam kriogeniki (Reference Book on Physicotechnical Bases of Cryogenics). Moscow: Jenergoatomizdat, 1985. 432 p.

DOI: 10.24000/0409-2961-2017-4-68-77
Year: 2017
Issue num: April
Keywords : thermal model a cylinder with polymeric liner methane state equation
Authors: