Specificity of Mud Volcanic Degassing of the Earth with Catastrophic Consequences


In the natural gas-saturated geosystems, diverse causal relationships (chains) of various hazardous and catastrophic phenomena are formed that occur under the direct triggering effect of the Earth degassing processes. The level of natural threats to human life and the safe functioning of industrial objects increases under the influence of self-ignition and gas explosions, one of the main causes of which is the electrization of air and electrostatic discharges. To ensure the safety of the homosphere, it is necessary to conduct special studies to take into account the threats from potentially explosive processes of degassing of the Earth.
The mud volcanic mechanism of the Earth degassing has a larger scale of distribution and insufficiently studied specificity of manifestation forms compared to those existing at the present level of knowledge. Due to the insufficient level of knowledge about the number of potentially hazardous natural objects, additional studies can lead to a radical revision of their genesis. In particular, as the result of detailed studies of heaving mounds on the bottom of the eastern Beaufort Sea, many of them were recognized by the Geological Survey of Canada as mud volcanoes.
An analysis was made of the number of powerful gas blowouts and explosions with the formation of giant craters on the Yamal Peninsula in 2014-2021. The authors came to the conclusion that the genesis of several of them has all the signs of mud volcanism with cryogenic specificity, in which, due to the presence of the cryosphere, pieces of frozen rock of predominantly clay composition are ejected instead of liquefied clay mass.
It is required to identify potentially hazardous gas-saturated objects and understand their genesis. This will allow to reduce the risks of uncontrolled gas blowouts that threaten the functioning of the infrastructure of the oil and gas industry in the Arctic, and make a negative contribution to the climate changes, as well as to switch to the rational use of the gas contained in these objects.

1. Aliev Ad.A., Guliev I.S., Dadashev F.G., Rahmanov R.R. Atlas of mud volcanoes of the world. Baku: Nafta-Press, 2015. 323 p. (In Russ.). 
2. Bogoyavlenskiy V.I., Bogoyavlenskiy I.V., Kargina T.N. Сatastrophic mud volcano eruption in Indonesia. Burenie i neft = Drilling and Oil. 2017. № 11. pp. 18–27. (In Russ.).
3. Bogoyavlensky V.I. Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere. Gornaya promyshlennost = Russian Mining Industry. 2020. 1 (149). pp. 97–118. (In Russ.). DOI: 10.30686/1609-9192-2020-1-97-118 
4. Nezhdanov A.A., Novopashin V.F., Ogibenin V.V., Akhmedsafin S.K., Varyagov S.A. Mud volcanism in the north of Western Siberia. Sb. nauch. tr. OOO «TyumenNIIgiprogaz» (Collection of research papers of TyumenNIIgiprogaz LLC). Tyumen: Flat, 2011. pp. 73–79. (In Russ.).
5. Nesterovsky V.A. Activation of the mud volcanic activity of the Kerch-Taman region. Geologicheskiy zhurnal = Geological Journal. 1990. № 1. pp. 138–143. (In Russ.).
6. Kholodov V.N. Types of Сatagenetic Transformations in Stratisphere, and Sedimentary Mineral Deposits. Uchenye zapiski Kazanskogo universiteta = Scientific notes of Kazan University. 2011. Vol. 153. Book 4. pp. 16–53. (In Russ.).
7. Kholodov V.N. Thermobaric depth settings of sedimentary rock basins and their fluid dynamics: Сommunication 2. Superhigh pressures and mud volcanoes. Litologiya i poleznye iskopaemye = Lithology and Mineral Resources. 2019. № 1. pp. 44–59. (In Russ.).  DOI: 10.31857/S0024-497X2019144-59
8. Shnyukov E.F., Sheremetev V.M., Maslakov N.A., Maslakov N.A., Kutnyy V.A., Gusakov I.N., Trofimov V.V. Mud volcanoes of the Kerch-Taman region. Krasnodar: GlavMedia, 2006. 176 p. (In Russ.).
9. Shnyukov E.F., Maslakov N.A. Potential hazard of mud volcanism for navigation. Geologiya i poleznye iskopaemye Mirovogo okeana = Geology and minerals of the World Ocean. 2009. № 2. pp. 81–91. (In Russ.).
10. Shnyukov E.F., Slipchenko B.V., Kutniy V.A. Burning products of hilly breccias (on the example of mud volcanoes in Azerbaijan). Osadochnye porody i rudy = Sedimentary rocks and ores.  Kiev: Naukova Dumka, 1978. pp. 105–119. (In Russ.).
11. Kopf A.J. Significance of mud volcanism. Reviews of Geophysics. 2002. Vol. 40. № 2. DOI: 10.1029/2000RG000093
12. Milkov A.V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology. 2000. Vol. 167. Iss. 1–2. P. 29–42. DOI: 10.1016/S0025-3227(00)00022-0
13. Paull C.K., Ussler W., Dallimore S.R., Blasco S.M., Lorenson T.D., Melling H., Medioli B.E., Nixon F.M., McLaughlin F.A. Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates. Geophysical Research Letters. 2007. Vol. 34. L01603. DOI: 10.1029/2006GL027977
14. Bogoyavlensky V.I. Fundamental aspects of the catastrophic gas blowout genesis and the formation of giant craters in the Arctic. Arktika: ekologiya i ekonomika = Arctic: ecology and economy. 2021. Vol. 11. № 1. pp. 51–66. (In Russ.). DOI: 10.25283/2223-4594-2021-1-51-66
15. Bogoyavlenskiy V.I., Bogoyavlenskiy I.V., Kargina T.N. Catastrophic gas blowout in 2020 on the Yamal Peninsula in the Arctic. Results of comprehensive analysis of aerospace RS data. Arktika: ekologiya i ekonomika = Arctic: ecology and economy. 2021. Vol. 11. № 3. pp. 362–374. (In Russ.). DOI: 10.25283/2223-4594-2021-3-362-374 
16. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Kargina T., Chuvilin E., Bukhanov B., Umnikov A. New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing. Geosciences. 2021. Vol. 11. № 2. DOI: 10.3390/geosciences11020071
17. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Sizov O., Kishankov A., Kargina T. Seyakha catastrophic blowout and explosion of gas from the permafrost in the Arctic, Yamal Peninsula. Cold Regions Science and Technology. 2022. Vol. 196. DOI: 10.1016/j.coldregions.2022.103507
18. Tingay M., Manga M., Rudolph M.L., Davies R. An alternative review of facts, coincidences and past and future studies of the Lusi eruption. Marine and Petroleum Geology. 2018. Vol. 95. pp. 345–361. DOI: 10.1016/j.marpetgeo.2017.12.031
19. Volozh Yu.A., Trokhimenko M.S., Kalimov A.M., Edilbaev M.T. Caspian region: annular sub-vertical structures, pockmarks and ex-pockmarks. Neft i gaz =Oil and Gas. 2019. № 6 (114). pp. 15–50. (In Russ.).
20. Adushkin V.V., Spivak A.A. Underground explosions. Мoscow: Nauka, 2007. 579 p. (In Russ.).
21. Dvoychenko P.A. Black Sea Earthquake of 1927 in Crimea. Priroda = Nature. 1928. № 6. pp. 523–542. (In Russ.).
22. Nikonov A.A. Crimean Earthquakes of 1927. Unknown Phenomena at Sea. Priroda = Nature. 2002. № 9. pp. 13–20. (In Russ.).
23. Kvenvolden K.A., Ginsburg G.D., Soloviev V.A. Worldwide distribution of subaquatic gas hydrates. Geo-Marine Letters. 1993. Vol. 13. pp. 32–40. DOI: 10.1007/BF01204390
24. Vogt P.R., Cherkashev G., Ginsburg G., Ivanov G., Milkov A., Crane K., Sundvor A., Pimenov N., Egorov A. Haakon Mosby Mud Volcano Provides Unusual Example of Venting. Eos, 1997. Vol. 78. № 48. DOI: 10.1029/97EO00326
25. Mackay J.R. Pingo Growth and collapse, Tuktoyaktuk Peninsula Area, Western Arctic Coast, Canada: a long-term field study. Géographie physique et Quaternaire. 1998. Vol. 52. № 3. pp. 271–323. DOI: 10.7202/004847ar
26. Andreassen K.,  Hubbard A., Winsborrow M., Patton H., Vadakkepuliyambatta S., Plaza A., Gudlaugsson E., Serov P., Deryabin A., Mattingsdal R., Mienert J., Bünz S. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science. 2017. Vol. 356. Iss. 6341. pp. 948–953. DOI: 10.1126/science.aal4500
27. Paull C.K., Dallimore S.R., Caress D.W., Gwiazda R., Melling H.,  Riedel M.,  Jin Y.K.,  Hong J.K.,  Kim Y.‐G., Graves D., Sherman A., Lundsten E., Anderson K., Lundsten L., Villinger H., Kopf A., Johnson S.B., Hughes Clarke J., Blasco S., Conway K., Neelands P., Thomas H., Côté M. Active mud volcanoes on the continental slope of the Canadian Beaufort Sea. Geochemistry Geophysics Geosystems. 2015. Vol. 16. pp. 3160–3181. DOI: 10.1002/2015GC005928
28. Melnikov V.P., Spesivtsev V.I., Kulikov V.N. About jet decontamination of hydrocarbons as a source of new growths of ice on a shelf of the Pechora sea. Itogi fundamentalnykh issledovaniy kriosfery Zemli v Arktike i Subarktike: materialy Mezhdunar. konf. (Results of fundamental research of the Earth’s cryosphere in the Arctic and Subarctic: materials of the International conference). Novosibirsk: Nauka, 1997. pp. 259–269. (In Russ.).
29. Serov P., Portnov A., Mienert J., Semenov P., Ilatovskaya P. Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost. Journal of Geophysical Research: Earth Surface. 2015. Vol. 120. pp. 1515–1529. DOI: 10.1002/ 2015JF003467
30. Bogoyavlensky V.I., Nikonov R.A. Hazardous Natural Processes in the Development of Oil and Gas Resources in the World Ocean: Landslides in the Azov-Black Sea Basin. Bezopasnost Truda v Promyshlennosti = Occupational Safety in Industry. 2020. № 12. pp. 44–52. (In Russ.). DOI: 10.24000/0409-2961-2020-12-44-52
DOI: 10.24000/0409-2961-2022-12-20-28
Year: 2022
Issue num: December
Keywords : earthquakes оползни mud volcanoes Earth degassing industry threats trigger processes gas emissions gas self-ignitions gas blowouts
  • Bogoyavlensky V.I.
    RAS Corresponding Member, Dr. Sci. (Eng.), Chief Research Associate, Deputy Director for Science, vib@pgc.su Oil and Gas Research Institute of the Russian Academy of Sciences, Moscow, Russia
  • Bogoyavlensky I.V.
    I.V. Bogoyavlensky, Researcher Oil and Gas Research Institute of the Russian Academy of Sciences, Moscow, Russia