Radiation Safety of Concrete


Assessment of radioactivity and radiological hazard of multicomponent building materials is extremely required, as long as in recent years the industrial waste, which can be concentrators of natural radionuclides, has been used in the production of building materials. Building materials are the sources of gamma radiation of natural radionuclides and radon entry. The subject of study is the radioactive properties of multicomponent concrete and the associated dose loads on human when used in construction. Using gamma-spectrometric method the specific activity 226Ra, 232Th and 40K were determined in seven samples of concrete. On the value of efficient specific activity Cэф<370 Бk/kg, the tested concrete samples belong to class I of radiation hazard, and can be used in construction without limitation. The effective equivalent dose for 50 years for people living in the concrete rooms is less than the total dose of population radiation due to natural radionuclides and medical procedures (170 mSv). The calculated effective doses of gamma radiation in the premises made of concretes under study, and the volumetric concentrations of radon isotopes comply with the radiation safety norms of the IAEA and the Russian Federation for all the samples, so they can be used in civil engineering.

  1. Shahbazi-Gahrouei D., Gholami M., Setayandeh S. A review on natural background radiation. Advanced Biomedical Research. 2013. Vol. 2. Iss. 3. 6 p. DOI: 10.4103/2277-9175.115821
  2. Buranurak S., Pangza K. Assessment of natural radioactivity levels and radiation hazards of Thai Portland cement brands using Gamma spectrometry technique. Materialstoday: Proceedings. 2018. Vol. 5. Iss. 6. pp. 13979–13988. DOI: 10.1016/j.matpr.2018.02.050
  3. Butkus D., Morkūnas G., Pilkyte L. Ionizing radiation in buildings: Situation and dealing with problems. Journal of Environmental Engineering and Landscape Management. 2015. Vol. 13. Iss. 2. pp. 103–107.
  4. Aslam M., Gul R., Ara T., Hussain M. Assessment of radiological hazards of naturally occurring radioactive materials in cement industry. Radiation Protection Dosimetry. 2012. Vol. 151. Iss. 3. pp. 483–488. DOI: 10.1093/rpd/ncs018
  5. Sezgin N., Karakelle B., Temelli U.E., Nemlioğlu S. Natural Radioactivity and Hazard Level Assessment of Cements and Cement Raw Materials. Recycling and Reuse Approaches for Better Sustainability. Cham: Springer, 2019. pp. 165–178.
  6. Labrincha J., Puertas F., Schroeyers W., Kovler K., Pontikes Y., Nuccetelli C., Krivenko P., Kovalchuk O., Petropavlovsky O., Komljenovic M., Fidanchevski E., Wiegers R., Volceanov E., Gunay E., Sanjuán M.A., Ducman V., Angjusheva B., Bajare D., Kovacs T., Bator G., Schreurs S., Aguiar J., Provis J.L. From NORM containing by-products to building materials. Naturally Occurring Radioactive Materials in Construction. Integrating Radiation Protection in Reuse (COST Action Tu1301 NORM4BUILDING). Woodhead Publishing, 2017. pp. 183–252. DOI: 10.1016/B978-0-08-102009-8.00007-4
  7. Altun M., Sezgin N., Nemlioglu S., Karakelle B., Can N., Temelli U.E. Natural radioactivity and hazard-level assessment of Portland cements in Turkey. Journal of Radioanalytical and Nuclear Chemistry. 2017. Vol. 314. Iss. 2. pp. 941–948. DOI: 10.1007/s10967-017-5476-7
  8. Dalma N., Cevik U., Kobya A.I., Celik A., Celik N., Grieken R.V. Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey. Journal of Hazardous Materials. 2010. Vol. 176. Iss. 1–3. pp. 644–649. DOI: 10.1016/j.jhazmat.2009.11.080
  9. Solak S., Turhan S., Uğur F.A., Goren E., Gezer F., Yegingil Z., Yegingil I. Evaluation of potential exposure risks of natural radioactivity levels emitted from building materials used in Adana, Turkey. Indoor and Built Environment. 2014. Vol. 23. Iss. 4. pp. 594–602. DOI: 10.1177/1420326X12448075
  10. Mansour H.L., Karim M.S., Mishjil Kh.A., Habubi N.F. Evaluation of Natural Radioactivity in Some Commercial Cement Samples by Using NaI(Tl) Detector. Materials Focus. 2017. Vol. 6. Iss. 3. pp. 339–344. DOI: 10.1166/mat.2017.1412
  11. Sharma A., Mahur A.K., Yadav M., Sonkawade R., Sharma A., Ramola R., Prasad R. Measurement of Natural Radioactivity, Radon Exhalation Rate and Radiation Hazard Assessment in Indian Cement Samples. Physics Procedia. 2015. Vol. 80. pp. 135–139. DOI: 10.1016/j.phpro.2015.11.086
  12. Vanasundari K., Ravisankar R., Durgadevi D., Kavita R., Karthikeyan M., Thillivelvan K., Dhinakaran B. Measurement of Natural Radioactivity in Building Material Used in Chengam of Tiruvannamalai District, Tamilnadu by Gamma-Ray Spectrometry. Indian Journal of Advances in Chemical Science. 2012. № 1. pp. 22–27. 
  13. Ademola J.A., Farai I.P. Gamma activity and radiation dose in concrete building blocks used for construction of dwellings in Jos, Nigeria. Radiation Protection Dosimetry. 2006. Vol. 121. Iss. 4. pp. 395–398. DOI: 10.1093/rpd/ncl052
  14. Ademola J.A. Assessment of natural radionuclide content of cements used in Nigeria. Journal of Radiological Protection. 2008. Vol. 28. Iss. 4. pp. 581–588. DOI: 10.1088/0952-4746/28/4/010
  15. Mahmoud K. Radionuclide content of local and imported cements used in Egypt. Journal of Radiological Protection. 2007. Vol. 27. Iss. 1. pp. 69–77. DOI: 10.1088/0952-4746/27/1/004
  16. Pantelić G.K., Todorović D.J., Nikolić J.D., Rajacic M.M., Jankovic M.M., Sarap N.B. Measurement of radioactivity in building materials in Serbia. Journal of Radioanalytical and Nuclear Chemistry. 2015. Vol. 303. Iss. 3. pp. 2517–2522. DOI: 10.1007/s10967-014-3745-2
  17. Eštoková A., Palaščáková L. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic. International Journal of Environmental Research and Public Health. 2013. Vol. 10. Iss. 12. pp. 7165–7179. DOI: 10.3390/ijerph10127165
  18. Cuibus A., Cosma C., Muntean L.E., Kiss Z. Experimental studies on the radioactivity and exhalation rate of several concrete mixtures with additions. Romanian Journal of Physics. 2015. Vol. 60. Iss. 7–8. pp. 1183–1192.
  19. Radiation safety norms (NRB-99/2009): Sanitary-epidemiological rules and standards. Moscow: Federalnyy tsentr gigieny i epidemiologii Rospotrebnadzora, 2009. 100 p. (In Russ.).
  20. 20 Lee E., Menezes G., Finch E. Natural radioactivity in building materials in the Republic of Ireland. Health Physics. 2004. Vol. 86. Iss. 4. pp. 378–83.
  21. Baltas H., Kiris E., Ustabas I., Yilmaz E., Sirin M., Kuloglu E., Gunes B.E. Determination of Natural Radioactivity Levels of Some Concretes and Mineral Admixtures in Turkey. Asian Journal of Chemistry. 2014. Vol. 26. Iss. 13. pp. 3946–3952. DOI: 10.14233/ajchem.2014.16045
  22. Kovler K. The national survey of natural radioactivity in concrete produced in Israel. Journal of Environmental Radioactivity. 2017. Vol. 168. pp. 46–53. DOI: 10.1016/j.jenvrad.2016.03.002
  23. Chen J. Risk assessment for radon exposure in various indoor environments. Radiation Protection Dosimetry. 2019. pp. 1–8. DOI: 10.1093/rpd/ncy284
  24. Shutenko L.M. Town housing facilities: its life cycle and radiation safety. Kiev: Tekhnіka, 2002. 251 p. (In Ukr.).
  25. Krisyuk E.M. Premises radiation background. Moscow: Energoatomizdat, 1989. 120 p. (In Russ.).
  26. Kovalenko G.D., Rudya K.G. Radioecology of Ukraine. Kiev: IPTs «Kiїvskiy unіversitet», 2001. 167 p. (In Russ.).
  27. Radiation protection and safety of radiation sources: International main safety norms. Vienna: MAGATE, 2010. 484 p. (In Russ.).
DOI: 10.24000/0409-2961-2019-8-50-56
Year: 2019
Issue num: August
Keywords : cement natural radionuclides concrete specific activity effective specific activity gamma radiation radon emanation