The Hazard Assessment of Hydrogen Flame Thermal Radiation



Annotation:

Today, due to the rapid development of the hydrogen power industry, fire safety of hydrogen-containing facilities becomes a matter of great importance. Risk assessment for the hydrogen power facilities is one of the key objectives of the development. To find the solution, the information on the intensity of hydrogen flare radiation must be obtained. At the same time, such information published in literary sources is often incomplete and sometimes even contradictory. Therefore, the study aims to review the literary sources published in Russian and international journals.
The basic value required to assess fire hazard is the intensity of the surface radiation of hydrogen flame. The study considered four types of the flame; i.e., the gaseous jet flame, the jet flame of liquid hydrogen, the flame in the liquid hydrogen pool, and the fireball. Remarkably, the intensity of the surface thermal radiation of hydrogen flame is significantly lower when compared with the hydrocarbon flame. For fire hazard calculations, the intensity of the surface thermal radiation of jet flame of gaseous hydrogen can be adopted as equal to 33 kW/m2. The surface thermal radiation intensity value for the hydrogen fireball can be adopted as equal to 330 kW/m2. The intensity of the surface thermal radiation at liquid hydrogen combustion (for both jet flame and pool fire) can be adopted as equal to 80 kW/m2.

References:
1. Gordienko D.M., Shebeko Yu.N. Fire and Explosion Safety of Hydrogen Energy Facilities. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2022. № 2. pp. 7–12. (In Russ.). DOI: 10.24000/0409-2961-2022-2-7-12
2. Gordienko D.M., Shebeko Yu.N. The fire safety of infrastructure facilities for hydrogen-powered vehicles. Pozharovzryvobezopasnost = Fire and Explosion Safety. 2022. Vol. 31. № 2. pp. 41–51. (In Russ.). DOI: 10.22227/0869-7493.2022.31.02.41-51
3. On approval of the methodology of fire risk design value determination in production facilities: the Decree of the EMERCOM of Russia of July 10, 2009 № 404. Available at: https://docs.cntd.ru/document/902170886?ysclid=lrg7xo04dp688365451 (accessed: November 20, 2023). (In Russ.).
4. Ekoto I.W., Houf W.G., Ruggles A.J., Creitz L.W., Li J.X. Large-scale hydrogen jet flame radiant fraction measurements and modeling. Proceedings of the 2012 9th International Pipeline Conference IPC 2012. Calgary, 2013. № IPC 2012-90535. pp. 713–724. DOI:10.1115/IPC2012-90535
5. Schefer R.W., Houf W.G., Bourne B., Colton J. Spatial and radiative properties of an open-flame hydrogen plume. International Journal of Hydrogen Energy. 2006. Vol. 31. Iss. 10. pp. 1332–1340. DOI: 10.1016/j.ijhydene.2005.11.020
6. Schefer R.W., Houf W.G., Williams T.C., Bourne B., Colton J. Characterization of high-pressure underexpanded hydrogen jet flames. International Journal of Hydrogen Energy. 2007. Vol. 32. Iss. 12. pp. 2081–2093. DOI: 10.1016/j.ijhydene.2006.08.037
7. Studer E., Jamois D., Jallais S., Leroy G., Hebrand J., Blanchetiere V. Properties of large-scale methane-hydrogen jet fires. International Journal of Hydrogen Energy. 2009. Vol. 34. Iss. 23. pp. 9611–9619. DOI: 10.1016/j.ijhydene.2009.09.024
8. Lowesmith D.J., Hankinson G. Large scale high pressure jet fires involving natural gas and natural/hydrogen mixtures. Process Safety and Environmental Protection. 2012. Vol. 90. Iss. 2. pp. 108–120. DOI: 10.1016/j.psep.2011.08.009
9. Lowesmith D.J., Hankinson G. Large scale experiment to study fires following the rupture oh high pressure pipelines conveying natural gas and natural gas/hydrogen mixtures. Process Safety and Environmental Protection. 2013. Vol. 91. pp. 101–111. DOI: 10.1016/j.psep.2012.03.004
10. Wang C.J., Wen J.X., Chen Z.B., Dembele S. Predicting radiative characteristics of hydrogen and hydrogen/methane jet fires using FireFOAM. International Journal of Hydrogen Energy. 2014. Vol. 39. Iss. 35. pp. 20560–20569. DOI: 10.1016/j.ijhydene.2014.04.062
11. Houf W., Schefer R. Predicting radiactive heat fluxes and flammability envelopes from unintended releases of hydrogen. International Journal of Hydrogen Energy. 2007. Vol. 32. Iss. 1. pp. 136–151. DOI: 10.1016/j.ijhydene.2006.04.009
12. Gomez-Mares M., Zarate L., Casal J. Jet fires and the domino effect. Fire Safety Journal. 2008. Vol. 43. № 8. pp. 583–588. DOI: 10.1016/j.firesaf.2008.01.002
13. Karpov V.L. Fire hazard of emergency discharges of combustible gas. thesis … Doctor of Technical Sciences. M.: VNIIPO, 2004. 325 p. (In Russ.).
14. Friedrich A., Breitung W., Stern G., Veser A., Kuznetsov M., Fast G., Oechsler B., Kotchourko N., Jordan T.. Travis J.R., Xiao J., Schwall M., Rottenecker M. Ignition and heat radiation of cryogenic hydrogen jets. International Journal of Hydrogen Energy. 2012. Vol. 37. Iss. 22. pp. 17589–17598.
15. Hecht E.S., Choudhury B.R. Characteristics of cryogenic hydrogen flames from high-aspect ratio nozzles. International Journal of Hydrogen Energy. 2021. Vol. 46. pp. 12320–12328.
16. Hall J.E., Hooker P., Willoughby D. Ignited release of liquid hydrogen: safety considerations of thermal and overpressure effects. International Journal of Hydrogen Energy. 2014. Vol. 39. Iss. 35. pp. 20547–20533. DOI: 10.1016/j.ijhydene.2014.05.141
17. Zalosh R. Blast waves and fireballs generated by hydrogen fuel tank rupture during fire exposure. Proceedings of the 5th International Seminar on Fire and Explosion Hazards. Edinburgh, 2008. pp. 149–158.
18. Ustolin F., Paltrinieri N., Landucci G. An innovative and comprehensive approach for the consequence analysis of liquid hydrogen vessel explosions. Journal of Loss Prevention in the Process Industries. 2020. Vol. 68. DOI: 10.1016/j.jlp.2020.104323
19. Wingerden K., Kluge M., Karim A., Ustolin F., Paltrinieri N. Medium-scale tests to investigate the possibility and effect of BLEVEs of storage vessels containing liquefied hydrogen. Chemical Engineering Transactions. 2022. Vol. 90. pp. 547–552. DOI: 10.3303/CET2290092
20. Betteridge S., Philips L. Large scale pressurized LNG BLEVE experiments. Symposium series. № 160. Hazards 25. Shell, 2015. pp. 12.
21. Roberts A.F. Thermal radiation hazards from released of LPG from pressurized storage. Fire Safety Journal. 1982. Vol. 4. Iss. 3. pp. 197–212. DOI: 10.1016/0379-7112(81)90018-7
DOI: 10.24000/0409-2961-2024-1-16-20
Year: 2024
Issue num: January
Keywords : thermal radiation pool fire hydrogen flames факел fireball
Authors:
  • Shebeko Ju.N.
    Dr. Sci. (Eng.), Prof., Chief Research Associate FGBU VNIIPO EMERCOM of Russia, Balashikha, Russia