References:
1. Ignatev V.N. Perspectives of Energy Conservation and Energy Management in Russia. Energosberezhenie = Energy Saving. 2019. № 3. pp. 60–65. (In Russ.).
2. Slepchenok V.S., Petrakov G.P. Increasing the energy efficiency of thermal insulation of heat network pipelines in Northern and Northeastern regions of Russia. Inzhenerno-stroitelnyj zhurnal = Magazine of Civil Engineering. 2011. № 4. pp. 26–32. (In Russ.).
3. Zolotukhin Yu.E., Ivanov A.M., Serochenkova E.A. Materials applicable for heat insulation of industrial pipelines and their calculation. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki = Proceedings of the Tula State University. Technical Sciences. 2019. № 7. pp. 177–182. (In Russ.).
4. Eremeev V.E. Study of thermal insulation based on the polyethylene foam in the form of tubes. Part 4. Fire safety of thermal insulation materials. Santekhnika. Otoplenie. Konditsionirovanie = Plumbing, Heating and Air Conditioning. 2020. № 1. pp. 62–66. (In Russ.).
5. EN 15715:2009. Thermal insulation products. Instructions for mounting and fixing for reaction to fire testing. Factory made products. Available at: https://standards.iteh.ai/catalog/standards/cen/fd6bd7a1-aa4e-4abd-bd2b-52bc6f4c8091/en-15715-2009 (accessed: November 20, 2022).
6. NFPA 274. Standard Test Method to Evaluate Fire Performance Characteristics of Pipe Insulation. Available at: http://arco-hvac.ir/wp-content/uploads/2018/04/NFPA-274-Std-Test-Evaluate-Performance-Pipe-Insul-2018.pdf (accessed: November 20, 2022).
7. ISO 20632:2008. Reaction-to-fire tests — Small room test for pipe insulation products or systems. Available at: https://standards.iteh.ai/catalog/standards/iso/2e608aae-dedc-4d6e-b874-450574ceac8b/iso-20632-2008 (accessed: November 20, 2022).
8. Lim O.K., Nam D., Jang H.Y. Evaluation of the reaction-to-fire performance of pipe insulation material using small room test. Fire Science and Engineering. 2019. Vol. 33. № 4. pp. 1–8. DOI: 10.7731/KIFSE.2019.33.4.001
9. Zhang T., Zhou X., Yang L. Experimental study of fire hazards of thermal-insulation material in diesel locomotive: aluminum-polyurethane. Materials. 2016. Vol. 9. № 3. p. 168. DOI: 10.3390/ma9030168
10. Lim O.K., You W.J. Evaluating the fire risk of pipe insulation depending on installation conditions. Case Studies in Thermal Engineering. 2020. Vol. 21. DOI: 10.1016/j.csite.2020.100673
11. Suh H.W., Im S.M., Park T.-H., Kim H.-J., Kim H.-S., Choi H.-K., Chung J.-H., Bae S.-C. Fire spread of thermal insulation materials in the ceiling of piloti-type structure: Comparison of numerical simulation and experimental fire tests using small-and real-scale models. Sustainability. 2019. Vol. 11. № 12. DOI: 10.3390/su11123389
12. Chick C., Hodson C. Mitigating the risk of fire spread from pipe insulation. Available at: https://local.armacell.com/fileadmin/cms/australia/downloads/technical_information/en/2016_-_4_-_Armacell_in_Ecolibium_Form.pdf (accessed: November 20, 2022).
13. Sharipova S.A. Fire hazard of industrial pipelines with thermal insulation: thesis ... Candidate of Technical Sciences. Moscow, 2004. 186 p. (In Russ.).
2. Slepchenok V.S., Petrakov G.P. Increasing the energy efficiency of thermal insulation of heat network pipelines in Northern and Northeastern regions of Russia. Inzhenerno-stroitelnyj zhurnal = Magazine of Civil Engineering. 2011. № 4. pp. 26–32. (In Russ.).
3. Zolotukhin Yu.E., Ivanov A.M., Serochenkova E.A. Materials applicable for heat insulation of industrial pipelines and their calculation. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki = Proceedings of the Tula State University. Technical Sciences. 2019. № 7. pp. 177–182. (In Russ.).
4. Eremeev V.E. Study of thermal insulation based on the polyethylene foam in the form of tubes. Part 4. Fire safety of thermal insulation materials. Santekhnika. Otoplenie. Konditsionirovanie = Plumbing, Heating and Air Conditioning. 2020. № 1. pp. 62–66. (In Russ.).
5. EN 15715:2009. Thermal insulation products. Instructions for mounting and fixing for reaction to fire testing. Factory made products. Available at: https://standards.iteh.ai/catalog/standards/cen/fd6bd7a1-aa4e-4abd-bd2b-52bc6f4c8091/en-15715-2009 (accessed: November 20, 2022).
6. NFPA 274. Standard Test Method to Evaluate Fire Performance Characteristics of Pipe Insulation. Available at: http://arco-hvac.ir/wp-content/uploads/2018/04/NFPA-274-Std-Test-Evaluate-Performance-Pipe-Insul-2018.pdf (accessed: November 20, 2022).
7. ISO 20632:2008. Reaction-to-fire tests — Small room test for pipe insulation products or systems. Available at: https://standards.iteh.ai/catalog/standards/iso/2e608aae-dedc-4d6e-b874-450574ceac8b/iso-20632-2008 (accessed: November 20, 2022).
8. Lim O.K., Nam D., Jang H.Y. Evaluation of the reaction-to-fire performance of pipe insulation material using small room test. Fire Science and Engineering. 2019. Vol. 33. № 4. pp. 1–8. DOI: 10.7731/KIFSE.2019.33.4.001
9. Zhang T., Zhou X., Yang L. Experimental study of fire hazards of thermal-insulation material in diesel locomotive: aluminum-polyurethane. Materials. 2016. Vol. 9. № 3. p. 168. DOI: 10.3390/ma9030168
10. Lim O.K., You W.J. Evaluating the fire risk of pipe insulation depending on installation conditions. Case Studies in Thermal Engineering. 2020. Vol. 21. DOI: 10.1016/j.csite.2020.100673
11. Suh H.W., Im S.M., Park T.-H., Kim H.-J., Kim H.-S., Choi H.-K., Chung J.-H., Bae S.-C. Fire spread of thermal insulation materials in the ceiling of piloti-type structure: Comparison of numerical simulation and experimental fire tests using small-and real-scale models. Sustainability. 2019. Vol. 11. № 12. DOI: 10.3390/su11123389
12. Chick C., Hodson C. Mitigating the risk of fire spread from pipe insulation. Available at: https://local.armacell.com/fileadmin/cms/australia/downloads/technical_information/en/2016_-_4_-_Armacell_in_Ecolibium_Form.pdf (accessed: November 20, 2022).
13. Sharipova S.A. Fire hazard of industrial pipelines with thermal insulation: thesis ... Candidate of Technical Sciences. Moscow, 2004. 186 p. (In Russ.).