References:
1. Pozharkova I. Construction metal structures simulation cooling by fire robots. AIP Conference Proceedings. 2021. Vol. 2402. Iss. 1. DOI: 10.1063/5.0071434
2. Nemchinov S.G., Kharevskiy V.A., Gorban Yu.I., Tsarichenko S.G. Fire Protection of Machine Halls of Nuclear Power Plants using Multifunctional Robotic Complexes. Bezopasnost Truda v Promyshlennosti = Occupational Safety in Industry. 2022. № 2. pp 20–26. (In Russ.). DOI: 10.24000/0409-2961-2022-2-20-26
3. Zdor G.N., Potekha A.V. Correspondences clarification for envelope curves tracing of solid and fragmented hydraulic jets of fire monitors of fire-fighting robots. Веснік Гродзенскага дзяржаўнага ўніверсітэта імя Янкі Купалы. Ser. 6. Tjehnika. = Vesnik of Yanka Kupala State University of Grodno. Series 6. Engineering Science. 2015. № 2 (204). pp. 68–77. (In Bel.).
4. Gorban Yu.I., Sinelnikova E.A. Fire robots and fire monitors in automatic fire fighting and fire prevention. II. Stream ballistics. Pozharovzryvobezopasnost = Fire and Explosion Safety. 2014. Vol. 23. № 5. pp. 62–65. (In Russ.).
5. Angioletti M., Nino E., Ruocco G. CFD turbulent modelling of jet impingement and its validation by particle image velocimetry and mass transfer measurements. International Journal of Thermal Sciences. 2005. Vol. 44. Iss. 4. pp. 349–356. DOI: 10.1016/j.ijthermalsci.2004.11.010
6. Barbero R., Cuadra D., Domingo J., Iranzo A., Gallego E. Investigation of the near-range dispersion of particles unexpectedly released from a nuclear power plant using CFD. Environmental Fluid Mechanics. 2015. Vol. 15. № 1. pp. 67–83. DOI: 10.1007/s10652-014-9359-y
7. Guigay G., Eliásson J., Karlsson B., Horvat A., Sinai Y. A different approach to vent flow calculations in fire compartments using the critical flow condition. Journal of Fire Sciences. 2010. Vol. 28. Iss. 5. pp. 409–439. DOI: 10.1177/0734904109354966
8. GOST R 50.1.028—2001. Continuous acquisition and life-cycle support. Methodology of functional modelling. Available at: https://docs.cntd.ru/document/1200028629 (accessed: October 1, 2022). (In Russ.).
9. Sipatov A.M., Karabasov S.A., Gomzikov L.Yu., Abramchuk T.V., Semakov G.N. Atomization modelling using adaptive mesh refinement modeling liquid jet atomization using adaptive mesh refinement. Vychislitelnaya mekhanika sploshnykh sred = Computational Continuum Mechanics. 2015. Vol. 8. № 1. pp. 93–101. (In Russ.).
10. Gorban Yu.I., Gorban M.Yu. Firewater monitors. Status and prospects. Aktualnye problemy pozharnoy bezopasnosti: materialy XXVII Mezhdunar. nauch.-prakt. konf., posvyashchennoy 25-letiyu MChS Rossii (Actual problems of fire safety: Materials of the Twenty-Seventh International Scientific-Practical Conference Dedicated to the 25th Anniversary of the EMERCOM of Russia). In 3 parts. Pt. 3. Мoscow: FGBU VNIIPO MChS Rossii, 2015. pp. 24–31. (In Russ.).
11. Korkodinov Ya.A. The review of set of k-e models for modeling turbulence. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie = Bulletin of Perm National Research Polytechnic University. Mechanical engineering, materials science. 2013. Vol. 15. № 2. pp. 5–16. (In Russ.).
12. Malgarinos I., Nikolopoulos N., Marengo M., Antonini C., Manolis G. VOF simulations of the contact angle dynamics during the drop spreading: Standard models and a new wetting force model. Advances in Colloid and Interface Science. 2014. Vol. 212. pp. 1–20. DOI: 10.1016/j.cis.2014.07.004
13. Radhakrishnan S., Gyamfi L.A., Miro A., Font B., Calafell J., Lehmkuhl O. A Data-Driven Wall-Shear Stress Model for LES Using Gradient Boosted Decision Trees. High Performance Computing: ISC High Performance Digital 2021 International Workshops. Cham: Springer, 2021. pp. 105–121. DOI: 10.1007/978-3-030-90539-2_7