References:
1. Torkaman J., Ashori A., Momtazi A.S. Using wood fiber waste, rice husk ash, and limestone powder waste as cement replacement materials for lightweight concrete blocks. Construction and Building Materials. 2014. Vol. 50. pp. 432–436.
2. Brose A. Peripheral Timber: Applications for Waste Wood Material in Extreme Climates and Earthquake Risk Regions. Available at: https://dspace.mit.edu/handle/1721.1/122902 (accessed: January 20, 2021).
3. Adefisan O.O., Fabiyi J.S., McDonald A.G. Effects of rattan particle treatments on the strength and sorption properties of cement bonded composites. Bamboo and Rattan. 2016. Vol. 15. pp. 1–12.
4. Wang L., Chen S.S., Tsang D.C.W., Poon C.S., Shih K. Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Construction and Building Materials. 2016. Vol. 125. pp. 316–325. DOI: 10.1016/j.conbuildmat.2016.08.053
5. Brose A., Kongoletos J., Glicksman L. Coconut Fiber Cement Panels as Wall Insulation and Structural Diaphragm. Available at: https://www.frontiersin.org/articles/10.3389/fenrg.2019.00009/full (accessed: January 20, 2021).
6. Singh A., Singh J., Ajay S. Properties of Fiber Cement Boards for Building Partitions International. International Journal of Applied Engineering Research. 2018. Vol. 13. № 10. pp. 8486–8489.
7. Labib W.A. Fibre Reinforced Cement Composites. Available at: https://www.researchgate.net/publication/328210834_Fibre_Reinforced_Cement_Composites (accessed: January 20, 2021).
8. Technical regulations on fire safety requirements: Federal Law of July 22, 2008 № 123-FZ (as amended on April 30, 2021). Available at: https://docs.cntd.ru/document/902111644 (accessed: January 20, 2021). (In Russ.).
9. Smirnov N.V. Prediction of materials fire hazard: thesis ... Doctor of Technical Sciences. Мoscow, 2002. 273 p. (In Russ.).
10. Molchadskiy O.I. Application of thermal analysis methods for assessing fire-technical characteristics of the building materials. Pozharnaya bezopasnost = Fire Safety. 2001. № 4. pp. 31–36. (In Russ.).
11. Astapenko V.M., Koshmarov Yu.A., Molchadskiy I.S., Shevlyakov A.N. Thermal gas dynamics of indoor fires. Мoscow: Stroyizdat, 1988. 447 p. (In Russ.).
12. Molchadskiy I.S. Fire in the room. Мoscow: VNIIPO, 2005. 456 p. (In Russ.).
13. Dobrogorskaya L.V., Bushmanova A.V., Mikhaylova M.K., Dalinchuk V.S. Fire prevention measures for the hinged ventilated facades. Stroitelstvo unikalnykh zdaniy i sooruzheniy = Construction of unique buildings and structures. 2016. № 9 (48). pp. 34–51. (In Russ.).
14. Khasanov I.R., Kosachev A.A., Konstantinova N.I., Goltsov K.N. Fire hazard features of the hinged facade systems. Yubileynyy sb. tr. FGBU VNIIPO MChS Rossii (Jubilee collected paper of FGBU VNIIPO EMERCOM of Russia). Мoscow: VNIIPO, 2012. pp. 102–128. (In Russ.).
15. Zhukov A.D. Systems of Ventilated Facades. Available at: http://www.nso-journal.ru/public/journals/1/issues/2012/01/3.pdf (accessed: January 20, 2021). (In Russ.). DOI: 10.22227/2305-5502.2012.1.3
2. Brose A. Peripheral Timber: Applications for Waste Wood Material in Extreme Climates and Earthquake Risk Regions. Available at: https://dspace.mit.edu/handle/1721.1/122902 (accessed: January 20, 2021).
3. Adefisan O.O., Fabiyi J.S., McDonald A.G. Effects of rattan particle treatments on the strength and sorption properties of cement bonded composites. Bamboo and Rattan. 2016. Vol. 15. pp. 1–12.
4. Wang L., Chen S.S., Tsang D.C.W., Poon C.S., Shih K. Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Construction and Building Materials. 2016. Vol. 125. pp. 316–325. DOI: 10.1016/j.conbuildmat.2016.08.053
5. Brose A., Kongoletos J., Glicksman L. Coconut Fiber Cement Panels as Wall Insulation and Structural Diaphragm. Available at: https://www.frontiersin.org/articles/10.3389/fenrg.2019.00009/full (accessed: January 20, 2021).
6. Singh A., Singh J., Ajay S. Properties of Fiber Cement Boards for Building Partitions International. International Journal of Applied Engineering Research. 2018. Vol. 13. № 10. pp. 8486–8489.
7. Labib W.A. Fibre Reinforced Cement Composites. Available at: https://www.researchgate.net/publication/328210834_Fibre_Reinforced_Cement_Composites (accessed: January 20, 2021).
8. Technical regulations on fire safety requirements: Federal Law of July 22, 2008 № 123-FZ (as amended on April 30, 2021). Available at: https://docs.cntd.ru/document/902111644 (accessed: January 20, 2021). (In Russ.).
9. Smirnov N.V. Prediction of materials fire hazard: thesis ... Doctor of Technical Sciences. Мoscow, 2002. 273 p. (In Russ.).
10. Molchadskiy O.I. Application of thermal analysis methods for assessing fire-technical characteristics of the building materials. Pozharnaya bezopasnost = Fire Safety. 2001. № 4. pp. 31–36. (In Russ.).
11. Astapenko V.M., Koshmarov Yu.A., Molchadskiy I.S., Shevlyakov A.N. Thermal gas dynamics of indoor fires. Мoscow: Stroyizdat, 1988. 447 p. (In Russ.).
12. Molchadskiy I.S. Fire in the room. Мoscow: VNIIPO, 2005. 456 p. (In Russ.).
13. Dobrogorskaya L.V., Bushmanova A.V., Mikhaylova M.K., Dalinchuk V.S. Fire prevention measures for the hinged ventilated facades. Stroitelstvo unikalnykh zdaniy i sooruzheniy = Construction of unique buildings and structures. 2016. № 9 (48). pp. 34–51. (In Russ.).
14. Khasanov I.R., Kosachev A.A., Konstantinova N.I., Goltsov K.N. Fire hazard features of the hinged facade systems. Yubileynyy sb. tr. FGBU VNIIPO MChS Rossii (Jubilee collected paper of FGBU VNIIPO EMERCOM of Russia). Мoscow: VNIIPO, 2012. pp. 102–128. (In Russ.).
15. Zhukov A.D. Systems of Ventilated Facades. Available at: http://www.nso-journal.ru/public/journals/1/issues/2012/01/3.pdf (accessed: January 20, 2021). (In Russ.). DOI: 10.22227/2305-5502.2012.1.3