Industrial Objects Control with Generation of Predictive Component on PID-controller



Yu.R. Vladov, Dr. Sci. (Eng.), Laboratory Head, vlladov@mail.ru Orenburg Scientific Center UrO RAN, Orenburg, Russia A.Yu. Vladova, Dr. Sci. (Eng.), Lead Researcher IPU RAN, Moscow, Russia

Annotation:

The methods of technological objects automatic control are considered in the article. Technological objects with the workflow starting with the process parameters overclocking is the preferential field of application. The goal is to expand the functionality of the feasibility of proportional-integral-differentiating controllers (PID-controllers) by introducing the predictive component at the generation of controlling action. In the first stage of the workflow the process time values are measured, considering which the value of transport lag and constant time is calculated. In subsequent stages the discreteness is found, and the prediction deviations of the technological parameter are determined. Then, the controlling action is generated on PID-controller by algebraical supplement of the predictive component. Each time after reaching the prediction time, the process of controlling action generation is resumed. The proposed methods are effective for large industrial facilities and complexes in oil and gas industry and machine building. Using PID-controller with the predictive component significantly improves the quality of control, reduces the deviation of the regulated parameter from the set value, which contributes to the significant increase in energy saving and efficiency of automated process units.

References:

1. DCS Encyclopaedia. Available at: http://www.bookasutp.ru/Chapter5_1.aspx (accessed: January 18, 2018). (In Russ.).
2. Denisenko V.V. Computer control of technological process, experiment, equipment. Moscow: Goryachaya liniya — Telekom, 2009. 608 p. (In Russ.).
3. Zhu Q., Taher Azar A.T. Complex System Modelling and Control Through Intelligent Soft Computations. Berlin: Springer, 2015. 856 p.
4. Tararykin S.V., Tyutikov V.V., Kotov D.G., Varkov E.A. The way of dynamic objects control by specified quality indicators. Patent RF. № 2261466. Applied: May 05, 2003. Published: September 27, 2005. (In Russ.).
5. Kostogryz P.V. Industrial objects control method. Patent RF. № 2017196. Applied: May 03, 1989. Published: July 30, 1994. (In Russ.).
6. Verevkin V.I., Zeltser S.R., Galitskaya L.V., Lizogub P.P. Method of identification of the operating objects in the control systems. Patent RF. № 2277259. Applied: December 01, 2004. Published: May 27, 2006. Bulletin № 15. (In Russ.).
7. Denisenko V.V. PID-controllers: principles of construction and modification. Sovremennye tekhnologii avtomatizatsii = Modern Automation Technologies. 2006. № 4. pp. 66–74. (In Russ.).
8. Bakhirev I.V., Kavalerov B.V. Investigation of the option of the structure of fuzzy PID-controller of the rotation frequency of electric power gas turbine unit. Vestnik PNIPU = Vestnik PNIPU. 2014. № 9. pp.16–24. (In Russ.).
9. Ahn K.K., Truong D.Q. Online tuning fuzzy PID controller using robust extended Kalman filter. Journal of Process Control. 2009. Vol. 19. Iss. 6. pp. 1011–1023.
10. Rutkovskaya D., Pilinskiy M., Rutkovskiy L. Neural networks, genetic algorithms and fuzzy systems. Moscow: Goryachaya liniya — Telekom, 2006. 452 p. (In Russ.).
11. Mohanty B., Panda S., Hota P.K. Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system. International Journal of Electrical Power & Energy Systems. 2014. Vol. 54. pp. 77–85.
12. Neath M.J., Swain A.K., Madawala U.K., Thrimawithana D.J. An optimal PID controller for a bidirectional inductive power transfer system using multiobjective genetic algorithm. IEEE Transactions on Power Electronics. 2014. Vol. 29. №. 3. pp. 1523–1531.
13. Bahgaat N.K., El-Sayed M.I., Moustafa Hassan M.A., Bendary F.A. Load frequency control in power system via improving PID controller based on particle swarm optimization and ANFIS techniques. International Journal of System Dynamics Applications. 2014. Vol. 3. Iss. 3. pp. 1–24. DOI: 10.4018/ijsda.2014070101.
14. Chiha I., Liouane N., Borne P. Tuning PID controller using multiobjective ant colony optimization. Applied Computational Intelligence and Soft Computing. 2012. Vol. 2012. pp. 1–7. DOI: 10.1155/2012/536326
15. Martynenko I.I., Lysenko V.F. Automation systems design. Moscow: Agropromizdat, 1990. 243 p. (In Russ.).
16. Vladov Yu.R., Pavlova Yu.S., Vladova A.Yu., Turkov V.V. Method of generating control action for industrial object control. Patent RF. № 2450303. Applied: April 28, 2011. Published: May 10, 2012. Bulletin № 13. (In Russ.).
17. Vladov Yu.R., Pavlova Yu.S., Vladova A.Yu., Kalmykov A.V. Method of generating control action for industrial control object with two-stage workflow. Patent RF. № 2459225. Applied: June 16, 2011. Published: August 20, 2012. Bulletin № 23. (In Russ.).
18. Vladov Yu.R., Vladova A.Yu. Generation of corrective action by PID-controller for industrial objects taking into account predictive component. STIN = STIN. 2017. № 11. pp. 20–24. (In Russ.).

DOI: 10.24000/0409-2961-2018-3-22-28
Year: 2018
Issue num: March
Keywords : predictive component controlling action PID-controller workflow automatic control system gas treatment reactor
Authors:
    ;
  • Vladova A.Yu.
    Dr. Sci. (Eng.), Lead Researcher ICS RAS, Moscow, Russia Prof. Financial University under the Government of the Russian Federation, Moscow, Russia
  • Vladov Yu.R.
    vlladov@mail.ru, Dr. Sci. (Eng.), Prof., Laboratory Head OFRC UrO RAN, Orenburg, Russia Lead Researcher NOTs, Orenburg State University, Orenburg, Russia