Clustering Analysis of Changes in the Spatial Position of the Trunk Oil Pipeline Sections Based on the In-line Inspection Datasets

A.Yu. Vladova, Dr. Sci. (Eng.), Leading Researcher, IPU RAN, Moscow, Russia


Comparative analysis of the buried trunk pipeline sections based on the data obtained at different in-line inspections showed that there is a significant group of repaired sections with non-standard values of bending radius.
The purpose of this work is automated detection of pipe sections with decreasing values of bending radius despite the undertaken compensatory activities. Preliminary analysis of data of five in-line inspections showed the presence of more than 200 thousand sections, 20 % of which have the non-standard bending radius. The proposed method includes selecting non-standard bending radius dataset, restoring missing measurements, clustering dataset, and assigning compensatory activities. As a result, for each thirty-kilometer part of the oil pipeline, the group of sections with the stable change in spatial position is allocated. For this group it is required to perform compensatory activities to bring the bending radius to design values with preliminary studying geological structure of containing soil.


1. SNiP 2.05.06—85*. Magistralnye truboprovody (utv. postanovleniem Gosstroya SSSR ot 30 marta 1985 g. № 30) (SNiP 2.05.06—85*. Trunk Pipelines (Approved by the Decree of Gosstroy USSR of March 30, 1985, № 30). Available at: (accessed: November 22, 2017).
2. Surikov V.I., Mogilner L.Yu., Vladova A.Yu., Tambovtsev A.V., Provorov A.V. Creation, implementation and maintenance of the archive of electronic copies and digitized data of the trunk oil pipeline route. Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov = Science & Technologies: Oil and Oil Products Pipeline Transportation. 2015. № 4 (20). pр. 52–60.
3. Shibata A., Konishi M., Abe Y., Hasegawa R., Watanabe M. and Kamijo H. Neuro based classification of gas leakage sounds in pipeline. Proceedings of the 2009 IEEE International Conference on Networking, Sensing and Control. Okayama, Japan. 2009. рр. 298–302.
4. Ziashahabi M., Sadjedi H., Khezripour H. Automatic segmentation and classification of pipeline images using mathematic morphology and fuzzy k-means algorithm. Machine Vision and Image Processing (MVIP, 2010), 6th Iranian Conference. IEEE, 2010. рр. 1–5.
5. Naldi M.C., Campello R.J.G.B. Evolutionary k-means for distributed datasets. Brazilian Symposium on Neural Networks. 2014. № 127. рр. 30–42.
6. Vladova A.Yu. Algorithmic Support of Information System for Geotechnical Monitoring of Hydrocarbon Transportation in Permafrost Conditions. Informatsionnye tekhnologii = Information Technologies. 2017. Vol. 23, № 3. pp. 205–212.
7. Gzara K.B.M., Dzhain V. Opredelenie kharakteristik sostavlyayushchikh plasta na meste provedeniya rabot (Determination of the characteristics of the components of the formation at the site of work execution). Pat. RU 2574329 C1. № 2011150322/04. Applied: December 21, 2012. Published: February 10, 2016. Bulletin № 4.
8. Suares-Rivera R., Khandverger D.A., Soudergren T.L. Sposob i ustroystvo dlya mnogomernogo analiza dannykh dlya identifikatsii neodnorodnosti porody (Method and device for multidimensional analysis of data for identification of rock heterogeneity). Pat. RU 2474846 C1. № 2009129130/28. Applied: December 21, 2007. Published: February 10, 2013. Bulletin № 4.
9. Bekarevich A.A., Budadin O.N., Morozova T.J., Toporov V.I. Sposob adaptivnogo prognozirovaniya ostatochnogo resursa ekspluatatsii slozhnykh obektov i ustroystvo dlya ego osushchestvleniya (Method for adaptive forecast of the residual service life of the operation of complicated objects and the device for its implementation). Pat. RU 2533321 C1. № 2015148937. Applied: June 28, 2013. Published: November 20, 2014. Bulletin № 32.
10. Walkenbach J. Formuly v Excel 2013 (Excel 2013 Formulas). Moscow: OOO «I.D. Vilyams», 2016. 720 p.
11. Kabakov R.I. R v deystvii: Analiz i vizualizatsiya dannykh na yazyke R (R in Action: Data Analysis and Graphics with R). Moscow: DMK Press, 2014. 580 p.
12. Pison G., Struyf A., Rousseeuw P.J. Displaying a clustering with CLUSPLOT. In Computational Statistics & Data Analysis. 1999. Vol. 30. Iss. 4. pp. 381–392.

DOI: 10.24000/0409-2961-2018-1-22-25
Year: 2018
Issue num: January
Keywords : trunk oil pipeline measurements bending radius compensatory activities repair R programming in-line inspections
  • Vladova A.Yu.
    Dr. Sci. (Eng.), Lead Researcher ICS RAS, Moscow, Russia Prof. Financial University under the Government of the Russian Federation, Moscow, Russia