A Priori Assessment and Reduction of Risk of Hydraulic Structure Accident Based on Modeling



References:
1. Radoutskiy V.Yu., Shulzhenko V.N., Smaglyuk A.A. Hazardous natural processes. Belgorod: BGTU, 2013. 202 p. (In Russ.).
2. Malik L.K. Risk factors for hydraulic structures damage. Problems related to safety. Moscow: Nauka, 2005. 356 p. (In Russ.).
3. Evdokimov E.I., Kiseleva G.D. Analysis of emergency situations in Russia in 2000–2014. Bezopasnost v tekhnosfere = Safety in the technosphere. 2015. № 3. pp. 48–56. (In Russ.).
4. Stefanovich Dm.V. Probabilistic forecasting of accidents at dams in problems of assessment and supporting their reliability and safety. Tr. Mezhdunar. shkoly analiza bezopasnosti i riska «MABR – 2014» (Proceedings of the International School of Safety and Risk Analysis «MABR – 2014»). Saint Petersburg: SPbGU AP, 2014. pp. 144–150. (In Russ.).
5. Xin Zheng, Xiaohu Xu, Kaili Xu. Study on the Risk Assessment of the Tailings Dam Break. Transactions of the First International Symposium on Mine Safety Science and Engineering. Elsevier, 2011. pp. 2261–2269.
6. Slunga Eero. Concept and Bases of Risk Analysis for Dams. Helsinki: Helsinki University of Technology, 2001. 32 p.
7. Abdrazakov F., Orlova S., Pankova T., Mirkina E., Mikheeva O. Risk Assessment and the Prediction of Break through Wave During a Dam Accident. Journal of Interdisciplinary Research. 2018. Vol. 8. № 1. pp. 154–161.
8. Methodological recommendations for accident risk assessment on hydraulic structures of water management and industry. Available at: https://normativ.kontur.ru/document?moduleId=1&documentId=235742 (accessed: January 8, 2019). (In Russ.).
9. Belov P.G. Risk Management. System analysis and modeling. Moscow: Yurayt, 2014. 712 p. (In Russ.).
10. Koronkevich N.I. Extreme hydrological situations. Moscow: Media-PRESS, 2010. 464 p. (In Russ.).
11. Chirkeyskaya HPP — the most impressive man-made structure! Available at: https://zagopod.com/blog/43432157602/CHirkeyskaya-GES---samoe-vpechatlyayuschee-rukotvornoe-sooruzhen?nr=1 (accessed: January 8, 2019). (In Russ.).
12. Software complex of the automated structural and logical modeling and calculation of the reliability and safety of ARBITR systems. Available at: https://szma.com/pkasm.shtml (accessed: January 8, 2019). (In Russ.).
13. Rozov A.L. Ways to reduce damage when flooding river valleys by the break wave. Problemy bezopasnosti i chrezvychaynykh situatsiy = Problems of safety and emergency situations. 2015. № 2. pp. 119–125. (In Russ.).
14. Shcherbina V.I., Kogan E.A., Fisenko V.F., Solodkova O.V. Ensuring safety of hydraulic structures at the Votkinskaya HPP based on the automated diagnostic control system. Gidrotekhnicheskoe stroitelstvo = Hydraulic engineering. 2016. № 11. (In Russ.).
15. Twenty-Sixth International Congress on Large Dams. Available at: https://www.crcpress.com/Twenty-Sixth-International-Congress-on-Large-Dams--Vingt-Sixieme-Congres/ICOLD/p/book/9781138612280 (accessed: January 8, 2019).
16. Belov P.G. Assessment and optimization of measures on cascade risk reduction based on modeling. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2018. № 11. pp. 32–40. (In Russ.). DOI: 10.24000/0409-2961-2018-11-32-40
DOI: 10.24000/0409-2961-2019-2-26-34
Year: 2019
Issue num: February
Keywords : cause-and-effect diagram incident probability expected damage прогноз и снижение риска system analysis and synthesis
Authors: