Review and analysis of mathematical models of heavy gas clouds dispersion, and the relevant software complexes are presented. Four main groups of models of heavy gas clouds dispersion are allocated: empirical, integral, Lagrangian and CFD-models. Use of empirical models is limited by the conditions close to the conditions of experiments in which they were created. Integrated models allow to ensure good coincidence with the results of experiments for emissions in the conditions of the flat area in the non-congested space. Within CFD-models it is possible to obtain the most precise and reliable results, especially at emissions on the complicated relief, in the conditions of, congestion, full or partially confined space. The conclusion is drawn on the need of conducting the procedure of verification of all the mathematical models by comparison of the obtained results of modeling with the data of full-scale experiments.
E.A. Agapova, Researcher, eagapova@safety.ru Autonomous Noncommercial Organization «Industrial Risk Research Agency», Moscow, Russia S.I. Sumskoi, Candidate of Technical Sciences, Senior Lector NIYAU MEPhI, Moscow, Russia
Review and analysis of mathematical models of heavy gas clouds dispersion, and the relevant software complexes are presented. Four main groups of models of heavy gas clouds dispersion are allocated: empirical, integral, Lagrangian and CFD-models. Use of empirical models is limited by the conditions close to the conditions of experiments in which they were created. Integrated models allow to ensure good coincidence with the results of experiments for emissions in the conditions of the flat area in the non-congested space. Within CFD-models it is possible to obtain the most precise and reliable results, especially at emissions on the complicated relief, in the conditions of, congestion, full or partially confined space. The conclusion is drawn on the need of conducting the procedure of verification of all the mathematical models by comparison of the obtained results of modeling with the data of full-scale experiments.
1. Grazhdankin A.I. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2011. № 8. pp. 58–62.
2. Agapov A.A., Agapova E.A. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2015. № 4. pp. 58–71.
3. Sumskoj S.I., Pchelnikov A.V., Lisanov M.V., Pecherkin A.S., Shargatov V.A. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2005. № 8. pp. 28–35.
4. Hansen O.R., Ichard M., Davis S.G. 12th Annual International Symposium of the Mary Kay O'Connor Process Safety Center. Texas: Texas A&M University, 2009.
5. Grazhdankin A.I., Pecherkin A.S., Sidorov V.I. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2013. № 7. pp. 58–66.
6. Agapova E.A., Degtjarev D.V., Lisanov M.V., Krjukov A.S., Kulberg S.B., Sumskoj S.I. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2015. № 9. pp. 71–78.
7. Sumskoj S.I., Efremov K.V., Lisanov M.V., Sofin A.S. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2008. № 10. pp. 42–50.
8. Lisanov M.V., Efremov K.V., Sumskoj S.I., Panteleev V.A. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2011. № 2. pp. 56–60.
9. Savickaja T.V., Egorov A.F., Zapasnaja L.A., Dementienko A.V., Karibova Ju.A. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2012. № 8. pp. 78–83.
10. Sumskoj S.I., Agapov A.A., Sofin A.S., Sverchkov A.M., Egorov A.F. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2014. № 9. pp. 50–53.
11. Markiewicz M. Ecological Chemistry and Engineering. 2012. Vol. 19. № 3. pp. 297–314.
12. Blackmore D.R., Herman M.N, Woodward J.L. Journal of Hazardous Materials. 1982. Vol. 6. Iss. 1–2. pp. 107–128.
13. Burgess D.S., Zabetakis M.G. Detonation of a flammable cloud following a propane pipeline break: the December 9, 1970, explosion in Port Hudson. US Department of the Interior. Bureau of Mines, Report of Investigations. 1973. № 7752. 32 p.
14. Clancey V.J. Liquid and vapour emission and dispersion. Course on Loss prevention in the process industries. 1976.
15. Britter R.E., McQuaid J. Workbook on the dispersion of dense gases. HSE Contract Research Report. 1988. № 17/88. 128 p.
16. VDI Guidelines 3783, Part II Environmental Meteorology, Dispersion of heavy gases. The Association of German Engineers. 1990. 43 p.
17. Mercer A., Bartholome C., Carissimo B., Duijm N.J., Giesbrecht H. CEC Model Evaluation Group. Heavy Gas Dispersion Expert Group. Final report. Luxembourg, 1998. p. 62.
18. Van Ulden A.P. 1st International Symposium on Loss Prevention and Safety Promotion in the Process Industry. 1974. pp. 221–226.
19. Metodiki ocenki posledstvij avarij na opasnyh proizvodstvennyh obektah: sb. dokumentov (Methods of Assessment of Accidents Consequences at Hazardous Production Facilities: Collection of Documents). Ser. 27. Iss. 2. Moscow: GUP «NTC «Promyshlennaja bezopasnost», 2001. pp. 121–204.
20. Shatalov A.A., Lisanov M.V., Pecherkin A.S., Pchelnikov A.V., Sumskoj S.I. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2004. № 9. pp. 46–52.
21. Metodika modelirovanija rasprostranenija avarijnyh vybrosov opasnyh veshhestv: ruk. po bezopasnosti: prikaz Rostehnadzora ot 20 apr. 2015 g. № 158 (Methods of Modeling of Dispersion of Hazardous Substances Emergency Discharge: Safety Guide: Order of Rostechnadzor of April 20, 2015 № 158.). Ser. 27. Iss. 11. Moscow: ZAO NTC PB, 2015. 77 p.
22. Ooms G., Mahiue A.P., Zelis F. 1st International Symposium on Loss Prevention and Safety Promotion in the Process Industry. 1974. pp. 211–219.
23. Hoot T.G., Meroney R.N., Peterka J.A. Wind tunnel tests of negatively buoyant plumes. Technical report. Fluid Dynamics/Diffusion Laboratory. 1973. 104 p.
24. Abramovich G.N. Teorija turbulentnyh struj (Theory of Turbulent Jets). Moscow: JeKOLIT, 1960. 720 p.
25. Brujackij E.V. Turbuletnye stratificirovannye strujnye techenija (Turbulent, Stratified Jet Streams). Kiev: Naukova dumka, 1986. 295 p.
26. Witlox H.W.M. Atmospheric Environment. 1994. Vol. 28. Iss. 18. pp. 2917–2932.
27. Spicer T.O., Havens J.A. User's Guide For The DEGADIS 2.1 Dense Gas Dispersion Model. US Environmental Protection Agency. 1989. 431 p.
28. Colenbrander G.W. 3rd International Symposium on Loss Prevention and Safety Promotion in the Process Industry, Basle. 1980. pp. 1104–1132.
29. Te Riele P.H.M. 2nd International Symposium on Loss Prevention and Safety Promotion in the Process Industry. 1977. pp. 347–357.
30. Schreurs P., Mewis J. Atmospheric Environment. 1987. Vol. 21. pp. 765–776.
31. Britter R.E. International conference and Workshop on Modeling and Mitigating the Consequence of Accidental Releases of Hazardous Materials. 1995. pp. 67–76.
32. Volkov K.N., Emeljanov V.N., Zazimko V.M. Turbulentnye strui — statisticheskie modeli i modelirovanie krupnyh vihrej (Turbulent Jets — Statistical Models and Modeling of Large Vortexes). Moscow: Fizmatlit, 2014. 360 p.
33. Metodika ocenki posledstvij avarij na vzryvopozharoopasnyh himicheskih proizvodstvah: ruk. po bezopasnosti: prikaz Rostehnadzora ot 20 apr. 2015 g. № 160 (Methods of Assessment of Accidents Consequences at Explosion and Fire Hazardous Chemical Plants: Safety Guide:Order of Rostechnadzor of April 20, 2015 № 160). Ser. 09. Iss. 43. Moscow: ZAO NTC PB, 2015. 18 p.
34. Lisanov M.V., Pecherkin A.S., Sumskoj S.I., Shvyrjaev A.A. Vesti gazovoj nauki = News of Gas Science. 2017. № 1. pp. 180–187.