Radiation Properties of Coal and Thermal Industries Waste


For citation.
Khobotova E.B., Ignatenko M.I., Belichenko E.A., Ponikarovskaya S.V. Radiation Properties of Coal and Thermal Industries Waste. Bezopasnost Truda v Promyshlennosti = Occupational Safety in Industry. — 2020. — № 8. — рр. 60-67. (In Russ.). DOI: 10.24000/0409-2961-2020-8-60-67


References:
  1. Sources and effects of ionizing radiation. UNSCEAR 2000 Report to General Assembly, with scientific annexes. Vol. 1: Sources. New York: United Nations, 2000. 654 p.
  2. Pak Yu.N., Pak D.Yu., Ponomaryova M.V., Baizbayev M.B., Zhelayeva N.V. Radioactivity of Coal and Its Combustion Wastes. Coke and Chemistry. 2018. Vol. 61. pp. 188–192. DOI: 10.3103/S1068364X1805006X
  3. Kolo M.T., Khandaker M.U., Amin Y.M., Abdullah W.H.B. Quantification and radiological risk estimation due to the presence of natural radionuclides in Maiganga coal, Nigeria. Plos one. 2016. Vol. 11. Iss. 6. DOI: 10.1371/journal.pone.0158100
  4. Zhou C., Liu G., Cheng S., Fang T., Lam P.K.S. The environmental geochemistry of trace elements and naturally radionuclides in a coal gangue brick-making plant. Scientific Reports. 2014. № 4. pp. 1–9. DOI: 10.1038/srep06221
  5. Zhang N., Liu C. Radiation characteristics of natural gamma-ray from coal and gangue for recognition in top coal caving. Scientific Reports. 2018. № 8. pp. 190–199. DOI: 10.1038/s41598-017-18625-y
  6. Marpaung H., Alfian Z., Raja S.L., Akhyariansyah D., Silalahi D., Simanjuntak C., Harahap R. Analysis and risk assessment of natural radioactivity elements in coal wastes from Medan industrial area. Journal of Physics: Conference Series. 2018. Vol. 1116. Iss. 4. pp. 1–4. DOI: 10.1088/1742-6596/1116/4/042018
  7. Zubova L.G., Zubov A.R., Zubov A.A., Kharlamova A.V., Vorobev S.G., Makarishina Yu.I., Bunyachenko V.V. Waste heaps: monograph. Lugansk: Noulidzh, 2015. 716 p. (In Russ.).
  8. Zubova L.G., Zubov A.R. Assessment of the radioactivity of the rock dumps in the coal mines of PAO Lisichanskugol. Ugol Ukrainy = Coal of Ukraine. 2016. № 2. pp. 59–65. (In Russ.).
  9. Dudu V.P., Mathuthu M., Manjoro M. Assessment of heavy metals and radionuclides in dust fallout in the West Rand mining area of South Africa. Clean Air Journal. 2018. Vol. 28. № 2. pp. 42–52. DOI: 10.17159/2410-972x/2018/v28n2a17
  10. Kolo M.T., Amin Y.M., Khandaker M.U., Abdullah W.H.B. Radionuclide concentrations and excess lifetime cancer risk due to gamma radioactivity in tailing enriched soil around Maiganga coal mine, Northeast Nigeria. International Journal of Radiation Research. 2017. Vol. 15. № 1. pp. 71–80. DOI: 10.18869/acadpub.ijrr.15.1.71
  11. Śleziak M., Duliński M. Suitability of rocks and sediments from Brzeszcze and Silesia coal mines as building materials in terms of radiological hazard. Nukleonika. 2019. Vol. 64. № 2. pp. 65–70. DOI: 10.2478/nuka-2019-0008
  12. Mursa P., Vocheci F., Dumitrescu R.-O., Şufaru L.D.N. Radioactive pollution generated by the electric powers using coal as combustible. International Conference Knowledge-based organization. 2018. Vol. 24. № 3. pp. 59–65. DOI: 10.1515/kbo-2018-0137
  13. Sidorova G.P., Ovseychuk V.A. Determination of specific effficient activity in coals. Gornyy informatsionno-analiticheskiy byulleten = Mining informational and analytical bulletin. 2016. № 8. pp. 369–378. (In Russ.).
  14. Krylov D.A., Sidorova G.P. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants. Thermal Engineering. 2013. № 60. pp. 239–243. DOI: 10.1134/S0040601513040046
  15. Flues M., Camargo I.M.C., Silva P.S.C., Mazzilli B.P. Radioactivity of coal and ashes from Figueira coal power plant in Brazil. Journal of Radioanalytical and Nuclear Chemistry. 2006. Vol. 270. № 3. pp. 597–602.
  16. Janković M.M., Rajačić M.M., Todorović D.J., Sarap N.B., Nikolić J.D., Pantelić G.K., Krstić M.M. Study of radioactivity in environment around power plants Tent A and Kolubara due to coal burning for 2015. RAD Conference Proceedings. 2016. Vol. 1. pp. 84–89.
  17. Khobotova E., Ignatenko M., Larin V., Kalmykova Yu., Turenko A. Elemental and mineral composition of ash-slag wastes of Slovianska power plant. Chemistry and chemical technology. 2017. Vol. 11. № 3. pp. 378–382. DOI: 10.23939/chcht11.03.378
  18. Khobotova E.B., Kalmykova Yu.S., Ignatenko M.I., Larin V.I. Natural radionuclides of blast furnace slags. Chernye metally = Ferrous metals. 2017. № 1. pp. 23–28. (In Russ.).
  19. SanPiN 2.6.1.2523—09. Radiation Safety Standards NRB-99/2009. Available at: http://docs.cntd.ru/document/902170553 (accessed: April 16, 2020). (In Russ.).
  20. Radiation Safety Standards of Ukraine (NRBU-97). State hygienic standards GGN 6.6.1.-6.5.001.98. Official publication. Kiev, 1998. 159 p. (In Russ.).
  21. Krisyuk E.M. Premises radiation background. Moscow: Energoatomizdat, 1989. 120 p. (In Russ.).
  22. Sokolov I.A. Ways to reduce the levels of ionizing radiation for natural radionuclides in the construction industry. Dnepropetrovsk: PGASA, 2004. 163 p. (In Russ.).
  23. Tufail M. Radium equivalent activity in the light of UNSCEAR report. Environmental monitoring and assessment. 2012. № 184 (9). pp. 5663—5667.
  24. Exposure to radiation from the natural radioactivity in building materials. Report by an NEA Group of Experts. Paris: OECD, 1979. 40 p.
  25. Radiation protection 112. Radiological protection principles concerning the natural radioactivity of building materials. Luxembourg: Directorate-General Environment, 1999. 18 p.
  26. Sources and effects of ionizing radiation. UNSCEAR 2008 Report to the General Assembly, with scientific annexes. Vol. 1. New York: United Nations, 2010. 683 p.
  27. 1990 Recommendations of the International Commission on radiological protection. Annals of the ICRP. 1991. Vol. 21. Iss. 1–3. pp. 1–201.
  28. Radiation protection and safety of radiation sources: international basic safety codes. Vena: MAGATE, 2015. 484 p. (In Russ.).
  29. Khobotova E.B., Grayvoronskaya I.V., Kalyuzhnaya Yu.S., Ignatenko M.I. Radiation Safety of Concrete. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2019. № 8. pp. 50‒56. (In Russ.). DOI: 10.24000/0409-2961-2019-8-50-56
DOI: 10.24000/0409-2961-2020-8-60-67
Year: 2020
Issue num: August
Keywords : effective specific activity radon emanation radionuclides fuel slags coal mining waste class of radiation hazard radiation hazard indices radiation doses
Authors:
  • Khobotova E.B.
    Dr. Sci. (Chem.), Prof., elinahobotova@gmail.com Kharkov National Auto-Road University, Kharkov, Ukraine
  • Ignatenko M.I.
    Cand. Sci. (Eng.), Assoc. Prof. Kharkov National Auto-Road University, Kharkov, Ukraine
  • Belichenko E.A.
    Cand. Sci. (Eng.), Senior Research Assistant Kharkov National Automobile and Highway University, Kharkiv, Ukraine
  • Ponikarovskaya S.V.
    Senior Lecturer Kharkov National Automobile and Highway University, Kharkiv, Ukraine